3.291 \(\int \frac{\tan ^3(c+d x)}{\sqrt [3]{a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=237 \[ \frac{3 \tan ^2(c+d x)}{5 d \sqrt [3]{a+i a \tan (c+d x)}}-\frac{\sqrt{3} \tan ^{-1}\left (\frac{\sqrt [3]{a}+2^{2/3} \sqrt [3]{a+i a \tan (c+d x)}}{\sqrt{3} \sqrt [3]{a}}\right )}{2 \sqrt [3]{2} \sqrt [3]{a} d}+\frac{3 (a+i a \tan (c+d x))^{2/3}}{10 a d}+\frac{21}{10 d \sqrt [3]{a+i a \tan (c+d x)}}-\frac{3 \log \left (\sqrt [3]{2} \sqrt [3]{a}-\sqrt [3]{a+i a \tan (c+d x)}\right )}{4 \sqrt [3]{2} \sqrt [3]{a} d}-\frac{\log (\cos (c+d x))}{4 \sqrt [3]{2} \sqrt [3]{a} d}-\frac{i x}{4 \sqrt [3]{2} \sqrt [3]{a}} \]

[Out]

((-I/4)*x)/(2^(1/3)*a^(1/3)) - (Sqrt[3]*ArcTan[(a^(1/3) + 2^(2/3)*(a + I*a*Tan[c + d*x])^(1/3))/(Sqrt[3]*a^(1/
3))])/(2*2^(1/3)*a^(1/3)*d) - Log[Cos[c + d*x]]/(4*2^(1/3)*a^(1/3)*d) - (3*Log[2^(1/3)*a^(1/3) - (a + I*a*Tan[
c + d*x])^(1/3)])/(4*2^(1/3)*a^(1/3)*d) + 21/(10*d*(a + I*a*Tan[c + d*x])^(1/3)) + (3*Tan[c + d*x]^2)/(5*d*(a
+ I*a*Tan[c + d*x])^(1/3)) + (3*(a + I*a*Tan[c + d*x])^(2/3))/(10*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.274939, antiderivative size = 237, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.308, Rules used = {3560, 3592, 3526, 3481, 55, 617, 204, 31} \[ \frac{3 \tan ^2(c+d x)}{5 d \sqrt [3]{a+i a \tan (c+d x)}}-\frac{\sqrt{3} \tan ^{-1}\left (\frac{\sqrt [3]{a}+2^{2/3} \sqrt [3]{a+i a \tan (c+d x)}}{\sqrt{3} \sqrt [3]{a}}\right )}{2 \sqrt [3]{2} \sqrt [3]{a} d}+\frac{3 (a+i a \tan (c+d x))^{2/3}}{10 a d}+\frac{21}{10 d \sqrt [3]{a+i a \tan (c+d x)}}-\frac{3 \log \left (\sqrt [3]{2} \sqrt [3]{a}-\sqrt [3]{a+i a \tan (c+d x)}\right )}{4 \sqrt [3]{2} \sqrt [3]{a} d}-\frac{\log (\cos (c+d x))}{4 \sqrt [3]{2} \sqrt [3]{a} d}-\frac{i x}{4 \sqrt [3]{2} \sqrt [3]{a}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^3/(a + I*a*Tan[c + d*x])^(1/3),x]

[Out]

((-I/4)*x)/(2^(1/3)*a^(1/3)) - (Sqrt[3]*ArcTan[(a^(1/3) + 2^(2/3)*(a + I*a*Tan[c + d*x])^(1/3))/(Sqrt[3]*a^(1/
3))])/(2*2^(1/3)*a^(1/3)*d) - Log[Cos[c + d*x]]/(4*2^(1/3)*a^(1/3)*d) - (3*Log[2^(1/3)*a^(1/3) - (a + I*a*Tan[
c + d*x])^(1/3)])/(4*2^(1/3)*a^(1/3)*d) + 21/(10*d*(a + I*a*Tan[c + d*x])^(1/3)) + (3*Tan[c + d*x]^2)/(5*d*(a
+ I*a*Tan[c + d*x])^(1/3)) + (3*(a + I*a*Tan[c + d*x])^(2/3))/(10*a*d)

Rule 3560

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(d*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1))/(f*(m + n - 1)), x] - Dist[1/(a*(m + n - 1)), Int[(a
 + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 2)*Simp[d*(b*c*m + a*d*(-1 + n)) - a*c^2*(m + n - 1) + d*(b*d*m
 - a*c*(m + 2*n - 2))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[
a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[n, 1] && NeQ[m + n - 1, 0] && (IntegerQ[n] || IntegersQ[2*m, 2*n])

Rule 3592

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(B*d*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rule 3526

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^m)/(2*a*f*m), x] + Dist[(b*c + a*d)/(2*a*b), Int[(a + b*Tan[e + f*x])^(m + 1),
 x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0]

Rule 3481

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Dist[b/d, Subst[Int[(a + x)^(n - 1)/(a - x), x]
, x, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 + b^2, 0]

Rule 55

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/b, 3]}, -Simp[L
og[RemoveContent[a + b*x, x]]/(2*b*q), x] + (Dist[3/(2*b), Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1/
3)], x] - Dist[3/(2*b*q), Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x] && PosQ
[(b*c - a*d)/b]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{\tan ^3(c+d x)}{\sqrt [3]{a+i a \tan (c+d x)}} \, dx &=\frac{3 \tan ^2(c+d x)}{5 d \sqrt [3]{a+i a \tan (c+d x)}}-\frac{3 \int \frac{\tan (c+d x) \left (2 a-\frac{1}{3} i a \tan (c+d x)\right )}{\sqrt [3]{a+i a \tan (c+d x)}} \, dx}{5 a}\\ &=\frac{3 \tan ^2(c+d x)}{5 d \sqrt [3]{a+i a \tan (c+d x)}}+\frac{3 (a+i a \tan (c+d x))^{2/3}}{10 a d}-\frac{3 \int \frac{\frac{i a}{3}+2 a \tan (c+d x)}{\sqrt [3]{a+i a \tan (c+d x)}} \, dx}{5 a}\\ &=\frac{21}{10 d \sqrt [3]{a+i a \tan (c+d x)}}+\frac{3 \tan ^2(c+d x)}{5 d \sqrt [3]{a+i a \tan (c+d x)}}+\frac{3 (a+i a \tan (c+d x))^{2/3}}{10 a d}+\frac{i \int (a+i a \tan (c+d x))^{2/3} \, dx}{2 a}\\ &=\frac{21}{10 d \sqrt [3]{a+i a \tan (c+d x)}}+\frac{3 \tan ^2(c+d x)}{5 d \sqrt [3]{a+i a \tan (c+d x)}}+\frac{3 (a+i a \tan (c+d x))^{2/3}}{10 a d}+\frac{\operatorname{Subst}\left (\int \frac{1}{(a-x) \sqrt [3]{a+x}} \, dx,x,i a \tan (c+d x)\right )}{2 d}\\ &=-\frac{i x}{4 \sqrt [3]{2} \sqrt [3]{a}}-\frac{\log (\cos (c+d x))}{4 \sqrt [3]{2} \sqrt [3]{a} d}+\frac{21}{10 d \sqrt [3]{a+i a \tan (c+d x)}}+\frac{3 \tan ^2(c+d x)}{5 d \sqrt [3]{a+i a \tan (c+d x)}}+\frac{3 (a+i a \tan (c+d x))^{2/3}}{10 a d}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{2^{2/3} a^{2/3}+\sqrt [3]{2} \sqrt [3]{a} x+x^2} \, dx,x,\sqrt [3]{a+i a \tan (c+d x)}\right )}{4 d}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{2} \sqrt [3]{a}-x} \, dx,x,\sqrt [3]{a+i a \tan (c+d x)}\right )}{4 \sqrt [3]{2} \sqrt [3]{a} d}\\ &=-\frac{i x}{4 \sqrt [3]{2} \sqrt [3]{a}}-\frac{\log (\cos (c+d x))}{4 \sqrt [3]{2} \sqrt [3]{a} d}-\frac{3 \log \left (\sqrt [3]{2} \sqrt [3]{a}-\sqrt [3]{a+i a \tan (c+d x)}\right )}{4 \sqrt [3]{2} \sqrt [3]{a} d}+\frac{21}{10 d \sqrt [3]{a+i a \tan (c+d x)}}+\frac{3 \tan ^2(c+d x)}{5 d \sqrt [3]{a+i a \tan (c+d x)}}+\frac{3 (a+i a \tan (c+d x))^{2/3}}{10 a d}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+\frac{2^{2/3} \sqrt [3]{a+i a \tan (c+d x)}}{\sqrt [3]{a}}\right )}{2 \sqrt [3]{2} \sqrt [3]{a} d}\\ &=-\frac{i x}{4 \sqrt [3]{2} \sqrt [3]{a}}-\frac{\sqrt{3} \tan ^{-1}\left (\frac{1+\frac{2^{2/3} \sqrt [3]{a+i a \tan (c+d x)}}{\sqrt [3]{a}}}{\sqrt{3}}\right )}{2 \sqrt [3]{2} \sqrt [3]{a} d}-\frac{\log (\cos (c+d x))}{4 \sqrt [3]{2} \sqrt [3]{a} d}-\frac{3 \log \left (\sqrt [3]{2} \sqrt [3]{a}-\sqrt [3]{a+i a \tan (c+d x)}\right )}{4 \sqrt [3]{2} \sqrt [3]{a} d}+\frac{21}{10 d \sqrt [3]{a+i a \tan (c+d x)}}+\frac{3 \tan ^2(c+d x)}{5 d \sqrt [3]{a+i a \tan (c+d x)}}+\frac{3 (a+i a \tan (c+d x))^{2/3}}{10 a d}\\ \end{align*}

Mathematica [C]  time = 0.781205, size = 115, normalized size = 0.49 \[ \frac{3 \sec ^2(c+d x) \left (5 \, _2F_1\left (\frac{2}{3},1;\frac{5}{3};\frac{e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}\right ) (i \sin (2 (c+d x))+\cos (2 (c+d x))+1)+4 i \sin (2 (c+d x))+24 \cos (2 (c+d x))+40\right )}{80 d \sqrt [3]{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^3/(a + I*a*Tan[c + d*x])^(1/3),x]

[Out]

(3*Sec[c + d*x]^2*(40 + 24*Cos[2*(c + d*x)] + 5*Hypergeometric2F1[2/3, 1, 5/3, E^((2*I)*(c + d*x))/(1 + E^((2*
I)*(c + d*x)))]*(1 + Cos[2*(c + d*x)] + I*Sin[2*(c + d*x)]) + (4*I)*Sin[2*(c + d*x)]))/(80*d*(a + I*a*Tan[c +
d*x])^(1/3))

________________________________________________________________________________________

Maple [A]  time = 0.02, size = 198, normalized size = 0.8 \begin{align*} -{\frac{3}{5\,{a}^{2}d} \left ( a+ia\tan \left ( dx+c \right ) \right ) ^{{\frac{5}{3}}}}+{\frac{3}{2\,ad} \left ( a+ia\tan \left ( dx+c \right ) \right ) ^{{\frac{2}{3}}}}+{\frac{3}{2\,d}{\frac{1}{\sqrt [3]{a+ia\tan \left ( dx+c \right ) }}}}-{\frac{{2}^{{\frac{2}{3}}}}{4\,d}\ln \left ( \sqrt [3]{a+ia\tan \left ( dx+c \right ) }-\sqrt [3]{2}\sqrt [3]{a} \right ){\frac{1}{\sqrt [3]{a}}}}+{\frac{{2}^{{\frac{2}{3}}}}{8\,d}\ln \left ( \left ( a+ia\tan \left ( dx+c \right ) \right ) ^{{\frac{2}{3}}}+\sqrt [3]{2}\sqrt [3]{a}\sqrt [3]{a+ia\tan \left ( dx+c \right ) }+{2}^{{\frac{2}{3}}}{a}^{{\frac{2}{3}}} \right ){\frac{1}{\sqrt [3]{a}}}}-{\frac{\sqrt{3}{2}^{{\frac{2}{3}}}}{4\,d}\arctan \left ({\frac{\sqrt{3}}{3} \left ({{2}^{{\frac{2}{3}}}\sqrt [3]{a+ia\tan \left ( dx+c \right ) }{\frac{1}{\sqrt [3]{a}}}}+1 \right ) } \right ){\frac{1}{\sqrt [3]{a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^3/(a+I*a*tan(d*x+c))^(1/3),x)

[Out]

-3/5/d/a^2*(a+I*a*tan(d*x+c))^(5/3)+3/2*(a+I*a*tan(d*x+c))^(2/3)/a/d+3/2/d/(a+I*a*tan(d*x+c))^(1/3)-1/4/d/a^(1
/3)*2^(2/3)*ln((a+I*a*tan(d*x+c))^(1/3)-2^(1/3)*a^(1/3))+1/8/d/a^(1/3)*2^(2/3)*ln((a+I*a*tan(d*x+c))^(2/3)+2^(
1/3)*a^(1/3)*(a+I*a*tan(d*x+c))^(1/3)+2^(2/3)*a^(2/3))-1/4/d/a^(1/3)*3^(1/2)*2^(2/3)*arctan(1/3*3^(1/2)*(2^(2/
3)/a^(1/3)*(a+I*a*tan(d*x+c))^(1/3)+1))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3/(a+I*a*tan(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.78855, size = 1262, normalized size = 5.32 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3/(a+I*a*tan(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

1/40*(6*2^(2/3)*(a/(e^(2*I*d*x + 2*I*c) + 1))^(2/3)*(7*e^(4*I*d*x + 4*I*c) + 20*e^(2*I*d*x + 2*I*c) + 5)*e^(4/
3*I*d*x + 4/3*I*c) + 20*(1/2)^(1/3)*(a*d*e^(4*I*d*x + 4*I*c) + a*d*e^(2*I*d*x + 2*I*c))*(-1/(a*d^3))^(1/3)*log
(-2*(1/2)^(2/3)*a*d^2*(-1/(a*d^3))^(2/3) + 2^(1/3)*(a/(e^(2*I*d*x + 2*I*c) + 1))^(1/3)*e^(2/3*I*d*x + 2/3*I*c)
) + (1/2)^(1/3)*((10*I*sqrt(3)*a*d - 10*a*d)*e^(4*I*d*x + 4*I*c) + (10*I*sqrt(3)*a*d - 10*a*d)*e^(2*I*d*x + 2*
I*c))*(-1/(a*d^3))^(1/3)*log(1/4*(1/2)^(2/3)*(4*I*sqrt(3)*a*d^2 + 4*a*d^2)*(-1/(a*d^3))^(2/3) + 2^(1/3)*(a/(e^
(2*I*d*x + 2*I*c) + 1))^(1/3)*e^(2/3*I*d*x + 2/3*I*c)) + (1/2)^(1/3)*((-10*I*sqrt(3)*a*d - 10*a*d)*e^(4*I*d*x
+ 4*I*c) + (-10*I*sqrt(3)*a*d - 10*a*d)*e^(2*I*d*x + 2*I*c))*(-1/(a*d^3))^(1/3)*log(1/4*(1/2)^(2/3)*(-4*I*sqrt
(3)*a*d^2 + 4*a*d^2)*(-1/(a*d^3))^(2/3) + 2^(1/3)*(a/(e^(2*I*d*x + 2*I*c) + 1))^(1/3)*e^(2/3*I*d*x + 2/3*I*c))
)/(a*d*e^(4*I*d*x + 4*I*c) + a*d*e^(2*I*d*x + 2*I*c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{3}{\left (c + d x \right )}}{\sqrt [3]{a \left (i \tan{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**3/(a+I*a*tan(d*x+c))**(1/3),x)

[Out]

Integral(tan(c + d*x)**3/(a*(I*tan(c + d*x) + 1))**(1/3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (d x + c\right )^{3}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3/(a+I*a*tan(d*x+c))^(1/3),x, algorithm="giac")

[Out]

integrate(tan(d*x + c)^3/(I*a*tan(d*x + c) + a)^(1/3), x)